Improved regularity for the parabolic normalized p-Laplace equation
نویسندگان
چکیده
We derive regularity estimates for viscosity solutions to the parabolic normalized p-Laplace. By using approximation methods and scaling arguments p-parabolic operator, we show that gradient of bounded is locally asymptotically Lipschitz continuous when p sufficiently close 2. In addition, establish in Sobolev spaces.
منابع مشابه
Higher Sobolev regularity for the fractional p-Laplace equation in the superquadratic case
We prove that for p ≥ 2 solutions of equations modeled by the fractional p−Laplacian improve their regularity on the scale of fractional Sobolev spaces. Moreover, under certain precise conditions, they are in W 1,p loc and their gradients are in a fractional Sobolev space as well. The relevant estimates are stable as the fractional order of differentiation s reaches 1.
متن کاملENCLOSURE METHOD FOR THE p-LAPLACE EQUATION
We study the enclosure method for the p-Calderón problem, which is a nonlinear generalization of the inverse conductivity problem due to Calderón that involves the p-Laplace equation. The method allows one to reconstruct the convex hull of an inclusion in the nonlinear model by using exponentially growing solutions introduced by Wolff. We justify this method for the penetrable obstacle case, wh...
متن کاملRegularity of the obstacle problem for the parabolic biharmonic equation
We study the regularity of solutions to the obstacle problem for the parabolic biharmonic equation. We analyze the problem via an implicit time discretization, and we prove some regularity properties of the solution.
متن کاملEventual regularity for the parabolic minimal surface equation
We show that the parabolic minimal surface equation has an eventual regularization effect, that is, the solution becomes smooth after a strictly positive finite time.
متن کاملEXISTENCE OF SOLUTIONS TO A PARABOLIC p(x)-LAPLACE EQUATION WITH CONVECTION TERM VIA L∞ ESTIMATES
This article is devoted to the study of the existence of weak solutions to an initial and boundary value problem for a parabolic p(x)-Laplace equation with convection term. Using the De Giorgi iteration technique, the authors establish the critical a priori L∞-estimates and thus prove the existence of weak solutions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Calculus of Variations and Partial Differential Equations
سال: 2022
ISSN: ['0944-2669', '1432-0835']
DOI: https://doi.org/10.1007/s00526-022-02291-8